
Section 7.3: Compound Events

Because we are using the framework of set theory to analyze probability, we can use unions, intersections
and complements to break complex events into compositions of events for which it may be easier to
calculate probabilities. An event that can be described in terms of the union, intersection or complement
of events is called a compound event. We get formulas for the probabilities of compound events similar
to the counting formulas we encountered earlier. in fact, we can derive these directly from our counting
formulas for equally likely sample spaces.

Let E and F be events in a sample space, then

• E ∪ F (the union of E and F ) is the event consisting of those outcomes which are in at least one
of the two events, that is those outcomes which are in either E or F or both.

• E ∩F (the intersection of E and F ) is the event consisting of those outcomes which are in both
of the events E and F .

• The event E ′ (the complement of E ) is the event consisting of those outcomes which are not in
E.

Example * Roll a pair of fair six-sided dice, one red and one green, and observe the pair of numbers
on the two uppermost faces. The sample space for this experiment shown below is a list of the possible
pairs of numbers, listing the number on the red die first and the number on the green die second.

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

(a) Let E be the event: “The sum of the pair of numbers on the uppermost faces is 7”. List the
elements of E.

(b) Let F be the event: “At least one of the numbers on the uppermost faces is 6”. How many
outcomes are in the event F?

(c) List the outcomes in E ∩ F .

(d) How many outcomes are in the event E ∪ F .

(e) How many outcomes are in the event E ′.

Example An experiment with outcomes a, b, c, d is described by the probability table
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Outcomes Probability
a 0.2
b 0.1
c 0.15
d 0.55

Consider the events E = {a, b, c} and F = {b, c, d}. What is Pr(E ∩ F )?

Complement Rule Last time, we saw that if E is an event in a sample space with equally likely
outcomes, we know that

P (E ′) = 1− P (E).

This rule is true for any sample space and is not difficult to prove. We can also derive the following
formula for the probability of the union of two event, which we will demonstrate in the case where the
sample space has equally likely outcomes:
Let E and F be events in a sample space S, then

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ).

If E and F are events in a sample space with equally likely outcomes, then

P (E∪F ) =
n(E ∪ F )

n(S)
=

n(E) + n(F )− n(E ∩ F )

n(S)
=

n(E)

n(S)
+

n(F )

n(S)
−n(E ∩ F )

n(S)
= P (E)+P (F )−P (E∩F ).

Example * We can see this in action in our previous example: We show the event E in red below, we
show the event F in blue, we show the event E ∩ F in green and the event E ∪ F in magenta.

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)}

(a) Verify that P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ).

(b) Use the formulas given above to find P (E ′ ∪ F ).
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Example Let E and F be events in a sample space S. If Pr(E) = .3, Pr(F ) = .8 and Pr(E∩F ) = .2,
what is Pr(E ∪ F )?

Example Let A and B be two events. If Pr(A ∪ B) = 0.7, Pr(A) = 0.3, and Pr(B) = 0.4 then
Pr(A ∩B) =

Example Let E and F be events in a sample space, S. If Pr(E) = .5, Pr(F ′) = .4 and Pr(E∪F ) = .9,
find Pr(E ∩ F ).

Example At the Bad Donkey Stables, 50% of the donkeys bite, 40% kick, and 20% do both. You
are helping out for the day and you choose a donkey at random to groom. What is the probability that
the donkey you choose will either bite or kick (or both)?

Example there are 10,000 undergraduate students currently enrolled at the University of Notthe Same.
Two thousand of the undergraduate students are currently enrolled in a math class, two thousand, five
hundred are currently enrolled in an english class and five hundred are currently enrolled in both and
english and a math class. If you choose a student at random from among undergraduates currently
enrolled at the University of Notthe Same,

(a) what is the probability that they are enrolled in either an english class or a math class or both?

(b) what is the probability that the student is not enrolled in either an english or a math class?
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Example In the town of Novax, the probability that a child will contract measles is 0.45, the probability
that they will contract whooping cough is 0.6 and the probability that the will contract both is 0.3,
what is the probability that they will contract at least one of these diseases?

Example Kristina randomly chooses a route from K to B (see map below) with no backtracking for her
morning run. What is the probability that the route she chooses will take her past either the doberman
at D or the rottweiler at R (or both).

D

R

K

B

s
s

s

s
Venn Diagrams

We can use Venn diagrams to represent probabilities by recording the appropriate probability in each
basic region. Note the sum of all probabilities in the sample space(represented by the outer rectangle)
is one.

Example If Pr(E) = .4, P r(F ) = .5 and Pr(E ∩ F ′) = .3,

(a) Use a Venn diagram to find Pr(E ∩ F ).

(b) Find Pr(E ∪ F ).

Note If Pr(E) = 1, it means that E is a certain event and if P (E) = 0, the event is impossible.

We say two events E and F are mutually exclusive if they have no outcomes in common. This is
equivalent to any one of the following conditions:

• E and F are disjoint,
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• E ∩ F = ∅,

• P (E ∩ F ) = 0.

When two events E and F are mutually exclusive, we see from the formula for P (E ∪ F ) above that
can calculate P (E ∪ F ) by adding probabilities, that is

E and F mutually exclusive implies that P (E ∪ F ) = P (E) + P (F ).

Example Two fair six sided dice are rolled, and the numbers on their top faces are recorded. Consider
the following events:

E : both numbers are odd

F : the sum of the two numbers is odd

G : at least one of the numbers is a 5

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

Which of the following statements about these events is true?

(a) E and G are mutually exclusive

(b) E and F are mutually exclusive

(c) F and G are mutually exclusive

Example if we draw 5 cards from a deck of 52 at random, what is the probability that the hand of
cards we draw will have either 4 aces or 4 kings?

Example If we flip a coin 20 times and observe the resulting ordered sequence of heads and tails,
(write the answers using combinations of powers, permutations, combinations or factorials as appropri-
ate)

(a) what is the probability that we get either exactly 0 heads or exactly 1 head or 2 heads in the resulting
sequence?

(b) what is the probability that we get at least three heads?
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